A Technique for High-Speed Circuits on SOI Using Look-Ahead Type Active Body Bias Control

Masaaki Iijima, Katsuya Fujita, Kazuki Fukuoka, Masahiro Numa, Keisuke Yamamoto, †Kengo Takata
Kobe University, JAPAN

††Mitsubishi Electric Corp.

May 25, 2004
Contents

1. Background
2. Our Goal
3. Look-Ahead type Active Body Bias (LA-ABB) Control and Its Applications
4. Experimental Results
5. Conclusion
1. Background

Designing LSI ...

Scaling down

Transistor: 130 nm 90 nm 65 nm

getting difficult to maintain Scaling Principle ...

because of "Power Dissipation"

Dynamic Power: becoming lower per Gate by scaling down
Leakage Power: becoming larger even per Gate + Integration
-> awfully increasing

In the future, Dynamic Power ≪ Leakage Power estimated

"Leakage Power Reduction" is significant problem !!
LSI will be no longer depends on only scaling down in the future!!

SOI Transistor attracts attention

Feature of SOI (Silicon On Insulator) is …

- Lower junction capacity
- High-speed, Low power
- Body Terminal

SOI’s merits:
- Lower junction capacity
- High-speed, Low power
- Body Terminal
- Vth could be controllable

ABB: Active Body Bias

†† PD: Partially Depleted

Bulk MOSFET

SOI MOSFET (PD† SOI)
Example of Vth Control

DTMOS (Dynamic Threshold voltage MOS)

Gate signal connects to Body

→ Lowering \(V_{th} \) while switching

\[\text{speed up} \]

\[\begin{align*}
\text{in} = \text{Low} : & \quad \text{pMOS Low-} \ V_{th} \\
\text{in} = \text{High} : & \quad \text{nMOS Low-} \ V_{th}
\end{align*} \]

DTMOS

Restriction in DTMOS

When \(V_{n-body} \geq 0.6 \text{ V} \)

nMOS

\[\text{VDD must be less than 0.6 V}!! \]

Gate

Drain

Source

PN Current
1. Background

ABB method with subsidiary transistor

DTMOS inverter with sub transistor

Vref-p

Vref-n

in

out

\[V_{n-body} \leq 0.6 \text{ V} \]

Adjusting \(V_{ref-n}, V_{ref-p} \)

Suppress PN Current

No restriction on \(V_{DD} \) !!

But …

one problem still remains in conventional ABB method.
2. Our Goal

2 ideas for “LA-ABB” to achieve High-speed & Low-leakage

(1) Focus on differences in arrival time of input signals
 - Apply to “Manchester Carry Chain Adder”

(2) Use signals generated from previous stage
 - Apply to “High-speed 16:1 MUX”

Control body voltage earlier only if needed

Waiting in Low V_{th} status

Shorten delay time without leakage increase
Problem of conventional ABB method

DTMOS inverter with sub transistor actually causes longer delay than usual inverter!!

Because of …

- Still **High-$$V_{th}$$** at the moment turning ON.
- Less effective for high-speed circuits due to delay with body voltage.

- Already **Low-$$V_{th}$$** before Gate signal rises.
- Preceding signal is able to lower $$V_{th}$$ beforehand.

Conventional ABB

LA-ABB

“Preceding signal”

“Controlling $$V_{th}$$ beforehand”
3. LA-ABB and Its application

LA-ABB method

What’s the condition to control V_{th} beforehand??

(1) Gate signal arrives earlier than Source signal
(2) Control body voltage by some signal except Gate

Make use of 2 conditions to lower V_{th} beforehand
3.1 Application to Manchester Carry Chain Adder

LA-ABB method

(1) Gate signal arrives earlier than Source signal

4bit Manchester Carry Chain Adder

Aims at high-speed carry signal propagation
3.1 Application to Manchester Carry Chain Adder

Algorithm to calculate Carry out

Input: \(a_i, b_i, C_i \)
Output: \(C_{i+1} \) (carry out)

\[
\begin{align*}
\begin{array}{c|c|c|c}
\text{carry kill} & \text{carry propagation} & \text{carry generation} \\
\hline
0 & 0 & \text{Carry kill } k_i = 1 \\
0 & 1 & \text{Carry propagation } p_i = 1 \\
1 & 0 & \text{ } \\
1 & 1 & \text{Carry generation } g_i = 1 \\
\end{array}
\end{align*}
\]

Utilize this algorithm of calculation !!

\[
\begin{align*}
\begin{cases}
 k_i = a_i \cdot \overline{b}_i \\
p_i = a_i \oplus b_i \\
g_i = a_i \cdot b_i
\end{cases}
\Rightarrow C_{i+1} = \overline{k_i} (g_i + C_i \cdot p_i)
\end{align*}
\]
4bit Manchester Carry Chain Adder’s critical path

When carry signal propagates from C0 to C4 delay time must be longest.

: applying LA-ABB to transfer gates.
Each transfer gate is in the state of waiting for carry signal.

“Lowering V_{th}” affects speed-up propagation.

LA-ABB technique for speed-up

3.1 Application to Manchester Carry Chain Adder
3.2 Application to 16:1 MUX Circuit

LA-ABB method

(2) Control body voltage by some signal except Gate

- LA-ABB for D-FF
- LA-ABB for inverter

Control V_{th} by preceding signal → Speed-up

V_{ref-p}: High V_{th}

V_{ref-n}: Low V_{th}
3.2 Application to 16:1 MUX Circuit

Critical section in 16:1 MUX circuit

4:1-MUX

4:1 Selector

Control signal generator

1/4 divider

4 bit Data

Data OUT

clock

4:1-MUX

S1 S2 S3 S4

D1 D2 D3 D4

D1B D2B D3B D4B

SOUT SOUTB

LA-ABB for D-FF, inverter

are applied only to 4:1 MUX circuit in order to suppress extra power caused by sub transistor.
4. Experimental Results

Simulation conditions

- Process rule: 0.18 μm PD-SOI
- RC on wire:
 - Manchester Carry Chain: extract RC from Layout
 - 16:1MUX Circuit: assign 20 ~ 80 fF

Comparison among these techniques

- Circuit simulation by HSPICE evaluated
 - Delay
 - Power dissipation
 - Leakage current

Cell Layout

Assigning Low-V_{th} only to critical path.
Others: High-V_{th}.

Gate

Source

Drain

Body-tie (conventional)

LA-ABB

Dual V_{th}
4.1 Result with Manchester Carry Chain Adder

- Delay [ps]
 - Body-tie (conventional)
 - Dual Vth
 - LA-ABB (Proposed)

- Power [µW]

LA-ABB:

- **Speed**: 20% improvement compared to Body-tie.
- **As fast as Dual Vth.**
- **Power**: 3% degradation because of sub-Tr.
4.1 Result with Manchester Carry Chain Adder

Comparison in Standby mode

Leakage current [nA]

- Body-tie (conventional)
- Dual Vth
- LA-ABB (Proposed)

Dual Vth: 16x of leakage with Body-tie, LA-ABB.

LA-ABB: saving standby power as well as Body-tie.

In comparison with Dual Vth, LA-ABB is much more effective for high-speed technique without degradation in leakage.
4.2 Result with MUX Circuit

Max frequency in MUX circuit [GHz]

- **Body-tie (conventional)**
- **Dual Vth**
- **LA-ABB (Proposed)**

Power [mW] @Active

- VDD = 1.2 V, 29.3 mW
- VDD = 1.5 V, 31 mW
- VDD = 1.8 V, 29.6 mW

Leakage current [mA] @Standby

- VDD = 1.2 V, 1.93 mA
- VDD = 1.5 V, 3.11 mA
- VDD = 1.8 V, 63.4 mA

LA-ABB:

- 5% improvement compared to Body-tie

VDD: 1.2 V

Clock: 4 GHz

5% improvement compared to Body-tie
5. Summary

Feature of SOI: Dynamic V_{th} Control

LA-ABB method

- **idea 1** Gate signal arrives earlier than Source signal
 - 20% speed-up on Manchester Carry Chain Adder.

- **idea 2** Control body voltage by some signal except Gate (LA-ABB for D-FF, inverter)
 - 5% max. frequency improvement on 16:1MUX.

LA-ABB is more suitable for leakage reduction than Dual V_{th}.

<table>
<thead>
<tr>
<th>item</th>
<th>Body-tie</th>
<th>Dual V_{th}</th>
<th>LA-ABB</th>
</tr>
</thead>
<tbody>
<tr>
<td>speed</td>
<td>△</td>
<td>O</td>
<td>O</td>
</tr>
<tr>
<td>leakage</td>
<td>O</td>
<td>X</td>
<td>O</td>
</tr>
</tbody>
</table>

Future work

Leakage power reduction with SOI in ultra low V_{DD}